

Artigo Original de Pesquisa Original Research Article

Avaliação da infiltração marginal observada em cinco cimentos utilizados como seladores temporários

Microleakage evaluation of five temporary endodontic restorations

Rosana Belchior MIRANDA* Rosangela Acris PINHEIRO* Sandra Rivera FIDEL** Rivail Antonio Sérgio FIDEL** Luciana Carvalho REIS*** Amauri FAVIERI****

Endereço para correspondência: Address for correspondence:

Rivail Antonio Sérgio Fidel Rua Dr. Otavio Kelly, 63 – apto. 301 – Tijuca CEP 20511-280 – Rio de Janeiro – RJ *E-mail*: rivail@uerj.br

- * Mestres em Endodontia Unigranrio.
- ** Professores Doutores do curso de mestrado em Endodontia UERJ.
- *** Mestranda em Endodontia UERJ.
- **** Professor Doutor adjunto de Endodontia UFF-Friburgo.

Recebido em 18/4/08. Aceito em 13/8/08. Received on April 18, 2008. Accepted on August 13, 2008.

Palavras-chave:

Endodontia; infiltração marginal; seladores temporários.

Resumo

Introdução e objetivo: O objetivo deste estudo foi avaliar a infiltração marginal, através da passagem de íons níquel, em cinco tipos de materiais utilizados na clínica de Endodontia como seladores temporários: Coltosol®, Tempore plus® (DFL), Cimento de Zinco® (Lee Smith), Vitro-Fill® (DFL) e New Bond® (Technew). Material e métodos: Neste estudo foram usados 56 dentes unirradiculares, conservados em solução de timol 0,1%. Os espécimes foram divididos em: grupo I – Coltosol®; grupo II – Tempore plus®; grupo III – Cimento de Zinco®; grupo IV – Vitro-Fill®; grupo V – New Bond®. Uma bolinha de algodão

impregnada com solução de dimetilglioxima a 1% foi colocada na câmara pulpar, e o selamento das cavidades de acesso foi realizado com os materiais a serem testados. Os dentes foram então imersos em solução de sulfato de níquel a 5% a 37°C por 7 dias. A área infiltrada foi medida em mm² com o auxílio do software ImageTool. **Resultados:** Os grupos I, II e V apresentaram valores de infiltração significativamente menores que os grupos III e IV. No entanto não houve diferença estatística entre os grupos III e IV e entre os grupos I, II e V. **Conclusão:** Os grupos I, II e V (Coltosol®, Tempore plus® e New Bond®) demonstraram os melhores resultados, embora todos os materiais tenham permitido percolação do corante utilizado.

Keywords:

Endodontics; microleakage; temporary endodontic restorations.

Abstract

Introduction and objective: The aim of this study was to evaluate microleakage, through the crossing of ions nickel, in five types of materials used in the clinic of Endodontics, as temporary endodontics restorations: Coltosol®; Tempore plus® (DFL); Cimento de Zinco® (Lee Smith); Vitro-Fill® (DFL); New Bond® (Technew). Material and methods: In this study 56 uniradicular teeth had been used conserved in solution of timol 0,1%. The specimens had been divided in: group I – Coltosol[®]; group II – Tempore plus®; group III – Cimento de Zinco®; group IV – Vitro-Fill®; group V – New Bond®. A cotton pellet moistened with solution of 1% dimethylglyoxime was put into the pulp chamber and the sealing of the access cavities was made with the materials to be tested. The specimens were then immersed in 5% NiSO₄ for 7 days. The infiltrated area was measured in mm² with aid of ImageTool software. Results: Groups I, II and V had presented significantly lesser values of infiltration than groups III and IV. However, there wasn't statistics difference between groups III and IV and among groups I, II and V. Conclusion: The groups I, II e V (Coltosol®, Tempore plus® and New Bond®) showed the best results, although every restoration had allowed dye leakage.

Introdução

O perfeito selamento da cavidade de acesso endodôntico entre as sessões e após a obturação dos canais radiculares é essencial para o sucesso do tratamento. O cimento temporário deve atuar como barreira à infiltração marginal, não permitindo a infecção ou reinfecção do sistema de canais radiculares e nem o escape do curativo de demora [2].

Pécora e Roselino (1982) [9] apresentaram um método para o estudo *in vitro* de infiltração. Para isso, utilizaram uma solução alcoólica de dimetilglioxima a 1% em cones de papel dentro dos canais, selados com cimentos provisórios e armazenados em solução aquosa de sulfato de níquel a 10%, em que a infiltração foi revelada por meio da formação do complexo ni-dimetilglioxima de cor vermelha. Esberard *et al.* (1986) [4] estudaram, em 200 dentes extraídos, a capacidade seladora de dez cimentos provisórios e, para identificar a microinfiltração marginal, utilizaram solução aquosa

rodamina B a 2%, em que o resultado foi este (do melhor selador para o pior): Lumicon, óxido de zinco e eugenol, Cimpat-Rose, Coltosol, Pulpo San, Cavit R, Cavit W, fosfato de zinco, IRM e guta-percha. Fidel et al. (1991) [6] avaliaram in vivo a capacidade de vedamento de seladores provisórios, demonstrando, em 232 casos, a importância do número de paredes remanescentes na manutenção da integridade do selador provisório. Os autores concluíram que o Cavit e o Coltosol tiveram comportamento superior ao óxido de zinco e eugenol. Em estudo in vitro, De Paula et al. (1994) [3] testaram alguns materiais seladores pela ciclagem térmica com o uso do corante rodamina B, e o Pulpo San teve o resultado mais favorável, seguido pelo Coltosol e pelo Cavit. Pinheiro et al. (1997) [10], empregando o método de infiltração do corante azul-de-metileno a 2% e termociclagem, testaram dez cimentos, entre eles Vidrion C, Coltosol e fosfato de zinco, que não mostraram diferença estatística entre si. Os pesquisadores afirmam que nem sempre quando há

infiltração por corante haverá infiltração pelas bactérias. Sauáia *et al.* (2006) [11] observaram, em 80 molares humanos extraídos, a infiltração do corante por 5 dias com termociclagem dos cimentos temporários: Cavit, Vitremer e Flow-It. O Cavit apresentou melhor selamento em relação aos outros, e o Flow-It exibiu a mais elevada taxa de infiltração.

Lai et al. (2007) [7] compararam a infiltração marginal dos cimentos Cavit, IRM e fosfato de zinco. A infiltração foi avaliada com a imersão dos dentes na saliva artificial corada com azul-de-metileno a 2%, colocados em pH neutro a 37°C e após a termociclagem (1 dia, 3 dias, 5 dias e 7 dias). O Cavit obteve a menor infiltração marginal, independentemente do tempo, ao passo que mais da metade das amostras seladas com o IRM e o cimento fosfato de zinco apresentou severa infiltração no 1.° dia.

Bonetti Filho et al. (1998) [1] investigaram a capacidade seladora de alguns cimentos provisórios pela infiltração do corante azul-de-metileno, sob vácuo, e concluíram que este não impediu a infiltração e que o Coltosol mostrou excelentes resultados. Leonardo e Leal (1998) [8] afirmaram que a eficácia do selador provisório está em função do número de paredes e que, quando a cavidade possuir todas elas, pode-se utilizar Coltosol, Cimpat ou Lumicon. Zaia et al. (2002) [14] compararam o IRM, o Vidrion R, o Coltosol e o adesivo dentinário Scotch Bond em corante por 5 dias, com ciclagem térmica. Os resultados mostraram que a menor média de infiltração foi do Coltosol e que o Vidrion R só não foi pior do que o Scotch Bond. Shinohara et al. (2004) [12] investigaram in vitro os cimentos IRM, Bioplic, Vitremer (ionômero de vidro) e Dentalville, pela reação da dimetilglioxima a 1%, em bolinhas de algodão dentro das cavidades de acesso, e o sulfato de níquel a 5%, em que as amostras foram imersas. Os resultados demonstraram não haver diferença estatística entre o Vitremer e o Dentalville.

O objetivo deste estudo foi avaliar a infiltração marginal, através da passagem de íons níquel, de cinco tipos de materiais utilizados na clínica de Endodontia como seladores temporários: Coltosol®, Tempore plus® (DFL), Cimento de Zinco® (Lee Smith), Vitro-Fill® (DFL) e New Bond® (Technew).

Material e métodos

Foram utilizados 56 dentes unirradiculares que apresentavam as cavidades de acesso com paredes dentinárias. Os dentes estavam armazenados, em solução de timol a 0,1%, há mais de 10 anos no

banco de dentes da UERJ. Os espécimes foram divididos em cinco grupos: grupo I - Coltosol®; grupo II - Tempore plus® (DFL); grupo III - Cimento de Zinco® (Lee Smith); grupo IV - Vitro-Fill® (DFL); grupo V - New Bond® (Technew). Foram utilizados dez espécimes para cada cimento testado e dois grupos de três dentes cada, para os controles negativo e positivo. Após a limpeza da cavidade de acesso, procedeu-se à impermeabilização da superfície dos dentes com duas camadas de Superbonder®, com exceção de 2 mm da margem das cavidades de acesso. Em seguida, em cada câmara pulpar colocou-se uma bolinha de algodão impregnada com dimetilglioxima, deixando-se 2 mm para os seladores provisórios em teste, todos manipulados conforme instruções dos fabricantes. Na etapa seguinte, os espécimes foram colocados em recipientes contendo solução de sulfato de níquel a 5%, a 37°C, e mantidos assim por sete dias (figura 1). Após esse tempo, que simulou o intervalo entre as sessões do tratamento endodôntico, os grupos foram retirados da solução e lavados em água corrente por 2 horas (figura 2). A reação da solução de sulfato de níquel a 5% com a dimetilglioxima a 1%, presente nas bolinhas de algodão no interior da cavidade, forma o complexo Ni-dimetilglioxima de cor rosa, que evidencia a infiltração através dos materiais seladores temporários. Para a leitura dos resultados, os dentes foram seccionados longitudinalmente com discos de aço, no sentido vestíbulo-lingual, e fotografados com a máquina digital Nikon Coolpix 4300. Realizou-se a mensuração da área infiltrada nas coroas até a entrada dos canais com ajuda do software ImageTool, calibrando-se a ferramenta de medição com uma régua milimetrada fotografada ao lado de cada dente. As áreas infiltradas de cada metade do corte longitudinal das amostras foram obtidas em mm² e, depois, a média de infiltração ocorrida nos grupos.

Figura 1 - Grupos na solução de sulfato de níquel a 5%, mantidos a 37°C

Figura 2 - Após lavagem em água corrente por 2 horas

Resultados

Por meio do teste de análise de variância Anova foi observada diferença estatística significante entre os grupos. O teste de Tuckey (p < 0.05) evidenciou que os grupos I, II e V apresentaram valores de infiltração significativamente menores que os grupos III e IV. No entanto não houve diferença estatística entre os grupos III e IV e entre os grupos I, II e V (gráfico 1).

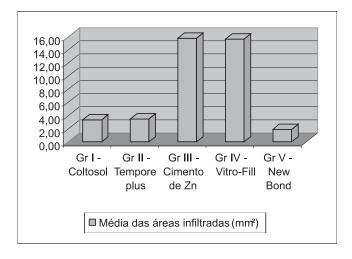


Gráfico 1 - Média das áreas infiltradas por grupo

Na figura 3 é possível uma comparação visual entre espécimes que permitiram quantidades

diferentes de infiltração do corante utilizado no estudo.

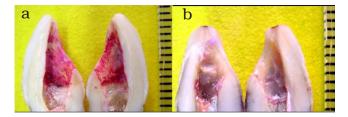


Figura 3 - a) Espécime do grupo III; b) Espécime do grupo I

Discussão

A microinfiltração permite que microrganismos, toxinas e substâncias químicas cheguem ao canal radicular, por isso é imprescindível a colocação de um selador temporário efetivo. Utilizou-se, no preparo dos grupos, a bolinha de algodão na entrada dos canais, e sobre ela se colocou a restauração provisória, conforme recomendado por Soares e Goldberg (2001) [13]. Os testes com corantes podem não corresponder à realidade da infiltração bacteriana, pois muitas vezes a capacidade de penetração deles é maior que a das bactérias [1, 10]. Os métodos em que se emprega infiltração passiva requerem tempo de exposição mais prolongado [1], de maneira que possam corresponder ao tempo transcorrido entre as consultas endodônticas. A solução alcoólica de dimetilglioxima a 1%, quando em contato com o sulfato de níquel a 5%, evidencia a infiltração através dos materiais seladores [9, 12]. Alguns autores submetem as amostras à ciclagem térmica, mimetizando as variações de temperatura dos alimentos [3, 7, 10, 11, 12, 14]. O selador provisório deve resistir às forças mastigatórias, mantendo-se íntegro até a restauração final do dente. Os dentes que possuem todas as paredes ao redor do acesso são mais resistentes [5, 8].

Embora quase todos os estudos revelem infiltrações através dos diversos materiais, muitos demonstraram resultados semelhantes aos desta pesquisa, no qual os cimentos com endurecimento pela umidade – Coltosol®, Tempore plus® e New Bond® – obtiveram melhor desempenho do que os de ionômero de vidro – Vitro-Fill® e Cimento de Zinco® [1, 3, 4, 6, 14]. Resultado diferente do encontrado por Pinheiro *et al.* (1997) [10] e Shinohara *et al.* (2004) [12], que observaram diferença estatística significante entre os cimentos testados.

Conclusão

O estudo permitiu concluir que os materiais dos grupos I, II e V (Coltosol®, Tempore plus® e New Bond®) apresentaram os menores índices de infiltração, embora todos os materiais tenham permitido percolação do corante utilizado.

Referências

- 1. Bonetti Filho I, Ferreira FBA, Loffredo LCM. Avaliação da capacidade seladora de cimentos provisórios através da infiltração do corante azulmetileno influência do emprego do vácuo. Rev Bras Odont. 1998;55(1):53-6.
- 2. Cohen S, Hargreaves KM. Pathways of the pulp. St. Louis: Mosby; 2007.
- 3. De Paula EAS, Fidel R, Fidel S, Gurgel Filho ED. Estudo in vitro da infiltração de alguns materiais seladores provisórios usados em Endodontia. Odontólogo Moderno. 1994;21(5):15-6.
- 4. Esberard RM et al. Avaliação da infiltração marginal dos principais materiais seladores provisórios frente à rodamina B a 2,2%. Estudo in vitro. Rev Odontol Clin. 1986;1(1):21-5.
- 5. Fidel RAS. Selamento provisório em endodontia estudo comparativo da infiltração marginal. RBO. 2000:57(6):12-4.
- 6. Fidel RAS et al. Avaliação in vivo de alguns materiais seladores provisórios, relacionando-os com as condições das cavidades endodônticas. Rev Bras Odont. 1991;48(6):33-40.

- 7. Lai Y, Pai L, Chen P. Marginal leakage of different temporary restorations in standardized complex endodontic access preparations. J Endod. 2007;33(7):875-8.
- 8. Leonardo MR, Leal JM. Endodontia: tratamento de canais radiculares. São Paulo: Panamericana: 1998.
- 9. Pécora JD, Roselino RB. Instabilidade dimensional dos materiais utilizados para selamento provisório de cavidades em Endodontia. Rev Fac Farm Odont Ribeirão Preto. 1982;19(2):69-70.
- 10. Pinheiro CC, Santos FS, Scelza MFZ. Estudo comparativo da infiltração marginal frente a alguns materiais restauradores provisórios. RBO. 1997;54(2):59-63.
- 11. Sauáia TS, Gomes BP, Pinheiro ET, Zaia AA, Ferraz CC, Souza-Filho FJ. Microleakage evaluation of intraorifice sealing materials in endodontically treated teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;102(2):242-6.
- 12. Shinohara AL et al. Avaliação in vitro da infiltração marginal de alguns materiais seladores provisórios submetidos à ciclagem térmica. JBE. 2004;5(6):79-85.
- 13. Soares IJ, Goldberg F. Endodontia técnica e fundamento. Porto Alegre: Artmed; 2001.
- 14. Zaia AA, Nakagawa R, De Quadro I, Gomes BP, Ferraz CC, Teixeira FB et al. An in vitro evaluation of four materials as barriers to coronal micoleakage in root-filled teeth. Int Endodont J. 2002;35(9):729-34.